

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

PHYSICAL SCIENCE

0652/41

Paper 4 Theory (Extended)

October/November 2020

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

This document has 20 pages. Blank pages are indicated.

DC (RW/CB) 192666/5 © UCLES 2020

[Turn over

1 (a) Fig. 1.1 shows a go-kart travelling at constant speed along a straight horizontal road.

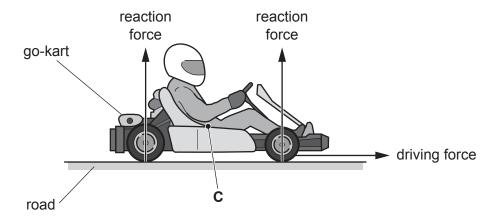


Fig. 1.1

	•
(i)	Point C is the centre of mass of the go-kart.
	Explain what is meant by the term centre of mass.
	[2]
(ii)	State why it is an advantage to have the centre of mass of the go-kart as low as possible.
	[1]
(iii)	The driving force and the reaction forces acting on the go-kart are shown on Fig. 1.1.
	On Fig. 1.1, draw and label two more arrows to show two different forces acting on the go-kart. [2]
(iv)	Deduce the resultant force on the go-kart travelling at constant speed.
	resultant force =[1]

(b)	The go-kart and driver have a total mass of 850 kg and travel at a speed of 24 m/s.
	Calculate the total kinetic energy of the go-kart and driver.
	Give the unit.

kinetic energy = unit [3]

[Total: 9]

- 2 Three states of matter are solid, liquid and gas.
 - (a) Complete Table 2.1 to compare the structure of a solid and a liquid in terms of particle separation, particle arrangement and particle motion.

Table 2.1

	solid	liquid
particle separation		
particle arrangement	regularly arranged	
particle motion		

[4]

(b) Fig. 2.1 shows how the temperature of a substance varies when it is heated steadily for a period of time.

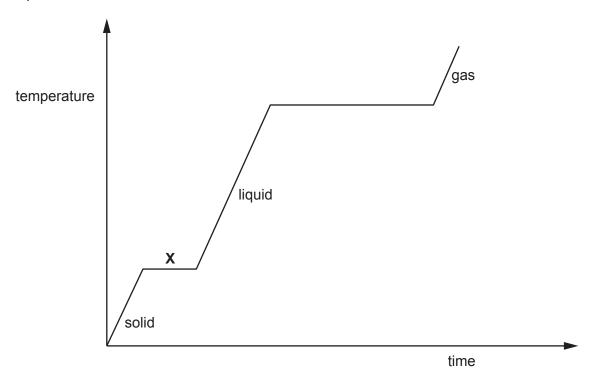


Fig. 2.1

Explain why the temperature stays constant for some time at X .
[3
[Total: 7

3 Fig. 3.1 shows a refrigerator.

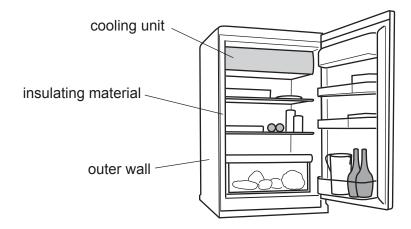


Fig. 3.1

(a)	The	e cooling unit is placed at the top of the refrigerator.	
	Exp	plain why this causes convection currents in the refrigerator.	
			[3]
(b)	(i)	Explain why the insulating material is required.	
			[1]
	(ii)	The outer wall is made from metal.	
		Explain why metals are good thermal conductors.	
			[2]
(c)	The	e metal outer wall is usually painted shiny white.	
	Exp	plain the effect this has when bright sunlight falls on the refrigerator.	
			[2]

Sou	and is transmitted by longitudinal waves. Water waves are mainly transverse waves.	
(a)	Explain the difference between longitudinal and transverse waves.	
		[2]
(b)	A sound wave consists of a series of compressions and rarefactions.	
()	Explain what is meant by a <i>rarefaction</i> .	
		[2]
(c)	A musical note has a frequency of 256 Hz.	
	The speed of sound in air is 320 m/s.	
	Calculate the wavelength of the musical note.	
	wavelength =m	[2]
(d)	A sound wave enters a person's ear.	
	State how the sound wave affects the person's ear to cause them to detect the sound.	
		[1]
	[Total:	7]

4

5 A student investigates the melting point of a sample of a medicinal drug.

The result is shown in Table 5.1.

Table 5.1

melting point data /°C
70–75

The student thinks the sample is a drug called ibuprofen.

The melting point of ibuprofen is 76 °C.

.....

(b) The molecular formula for ibuprofen is $C_{13}H_{18}O_2$.

Determine the relative molecular mass, $M_{\rm r}$, of ibuprofen.

$$M_{\rm r}$$
 of ibuprofen = [1]

(c) The structure of ibuprofen is shown in Fig. 5.1.

Fig. 5.1

Explain why ibuprofen is **not** a hydrocarbon.

(d)	Ibup	orofen i	s a weak acid.			
	Stat	te what	is meant by the term	acid, in terms of pro	oton transfer.	
						[1]
(e)	lbup	orofen r	eacts with sodium.			
	(i)	Table	5.2 shows the charge	es on an ibuprofen ic	on and a sodium ion.	
				Table 5.2		
			name	formula of ion	charge of ion	
			ibuprofen ion	C ₁₃ H ₁₇ O ₂ ⁻	-1	
			sodium ion	Na ⁺	+1	
			mine the formula of m ion combine.	the ionic compour	nd formed when the	e ibuprofen ion and
						[1]
	(ii)	The ot	her product formed is	a gas that gives a po	op sound when tested	d with a lighted splint.
		State t	the name of the gas.			
						[1]
(f)	lbur	orofen i	s soluble in ethanol.			
()			w a chemist can sepa	arate the ibunrofen f	rom the ethanol	
	Lλþ	nani iio	w a chemist can sept	state the louptolett in	ioni the ethanol.	
						[2]
						[Total: 8]

6	(a)	Carbon and	oxygen	react to	form	carbon	dioxide
---	-----	------------	--------	----------	------	--------	---------

The equation for the reaction is shown.

$$\mathrm{C} \, + \, \mathrm{O_2} \rightarrow \mathrm{CO_2}$$

Calculate the mass of carbon dioxide produced when 4g of carbon reacts with oxygen.

[A_r: C, 12; O, 16]

mass of CO ₂ = g [3]

(b)	State why incomplete combustion of carbon is a problem.	

Carbon diox	ide, CO ₂ , is a covalent comp			
Draw a dot-a	and-cross diagram to repres	ent the bonding in a mole	cule of carbon	dioxide.
You only nee	ed to show the outer electron	ns of each atom.		
Table 6.1 giv	ves the melting points of son	ne compounds.		
Table 6.1 giv		ne compounds.		
Table 6.1 giv				
Table 6.1 giv	Tak	ole 6.1		
Table 6.1 giv	compound	melting point/°C		
Table 6.1 giv	compound V	melting point/°C		
Table 6.1 giv	compound V W	melting point/°C 0 801		
	compound V W Y	nelting point/°C 0 801 -210 -57		
Circle the let	compound V W Y Z	nelting point/°C 0 801 -210 -57		
Circle the let	compound V W Y Z tters of all the compounds the compound the compounds the compound th	melting point/°C 0 801 -210 -57 nat are covalent.	7	
Circle the let	compound V W Y Z tters of all the compounds the compound the compounds the compound th	nelting point/°C 0 801 -210 -57	Z	
Circle the let	compound V W Y Z tters of all the compounds the compound the compounds the compound th	melting point/°C 0 801 -210 -57 nat are covalent.	Z	
Circle the let	compound V W Y Z tters of all the compounds the compound the compounds the compound th	melting point/°C 0 801 -210 -57 nat are covalent.	Z	

7 Fig. 7.1 shows a circuit with a battery of electromotive force (e.m.f.) 9.0 V, connected to two resistors in series.

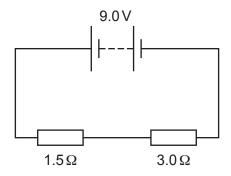


Fig. 7.1

(a) (i) Calculate the total resistance in the circuit.

resistance =		Ω	[1]
--------------	--	----------	----	---

(ii) Calculate the current in the circuit.

(iii) Calculate the power produced by the battery.

© UCLES 2020

(b) A student connects a $6.0\,\Omega$ resistor in parallel with the two resistors, as shown in Fig. 7.2.

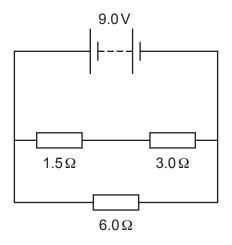


Fig. 7.2

Calculate the resistance of this combination of the three resistors.

resistance = Ω [2]

[Total: 7]

8 Fig. 8.1 shows the structure of an organic compound, 3-cyclopentene-1-ol.

Fig. 8.1

- The *cyclo* part of the name of this compound is because there is a ring shape,
- The *pent* part is because there are five carbon atoms.
- The -ol part is because there is an OH group, which is present in all alcohols

•	me	-or part is because there is an Ori group, which is present in all alcohols.
(a)	Des	cribe what the -ene part of the name refers to.
		[1]
/L-\		
(b)	Etna	anol is an alcohol. The equation shows the formation of ethanol, CH ₃ CH ₂ OH.
		$C_6H_{12}O_6 \rightarrow 2CH_3CH_2OH + 2CO_2$
	(i)	State the name of the process this equation represents.
		[1]
	(ii)	State one use for ethanol.
		[1]
, ,		
(c)	A ca	atalyst is involved during the formation of the organic compound shown in Fig. 8.1.
	(i)	Catalysts increase the rate of a reaction by affecting the activation energy of the reaction.
		Explain what is meant by the term activation energy.

(ii) (Concentration	of the	reactants	affects	the	rate of	f a	reaction
--------	---------------	--------	-----------	---------	-----	---------	-----	----------

of a reaction.	xpiain the effect of	r increasing the	concentration	of a reactant o	n the rate
					[31

(d) Fig. 8.2 shows an energy level diagram for an exothermic reaction.

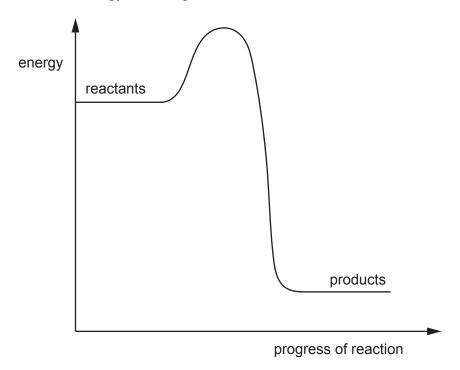


Fig. 8.2

On Fig. 8.2, use labelled arrows to show:

- the activation energy
- the overall change in energy.

[2]

[Total: 9]

9 Fig. 9.1 shows a conductor in the magnetic field formed by two electromagnets.

The conductor is connected to a sensitive voltmeter.

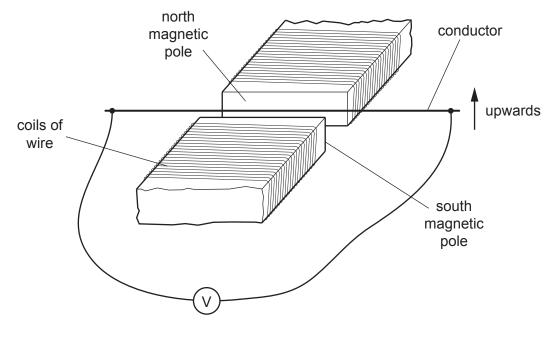


Fig. 9.1

State what is observed on the voltmeter when:

•	the conductor is moved vertically upwards out of the magnetic field	
•	the conductor is then moved back to its original position in the magnetic field	
•	the current in the coils of the electromagnet is then switched off	
		[4

10	The	halo	gens are in Group VII of the Periodic Table.
	(a)	Chlo	orine is an oxidising agent.
		(i)	Explain the meaning of the term oxidising agent.
			[1]
		(ii)	Predict whether iodine is a more or less powerful oxidising agent than chlorine. Give a reason for your answer.
			[1]
	(b)	Con	nplete the word equation for the reaction of bromine with aqueous sodium iodide.

(c) Data about Group VII elements are shown in Table 10.1.

bromine + sodium iodide \rightarrow

Table 10.1

element	symbol	melting point /°C	boiling point /°C	state at room temperature	colour
fluorine	F	-219	-188	gas	pale yellow
chlorine		-101	-34	gas	yellow-green
bromine	Br		59	liquid	red-brown
iodine	I	114	184		purple
astatine	At	300	350	solid	

Complete the table. [4]

[Total: 7]

[1]

11 (a) The isotope thallium-208 $\binom{208}{81}$ Tl) decays into a stable isotope of lead by emission of a β -particle.

Complete the equation showing this decay.

$$^{208}_{81}$$
T $l \rightarrow ^{\dots}_{\dots}$ Pb + $^{\dots}_{\dots}$ β [2]

(b) The half-life of the isotope thallium-208 ($^{208}_{81}$ Tl) is investigated.

Fig. 11.1 shows a graph of the counter reading against time.

The background count is 8 counts per minute.

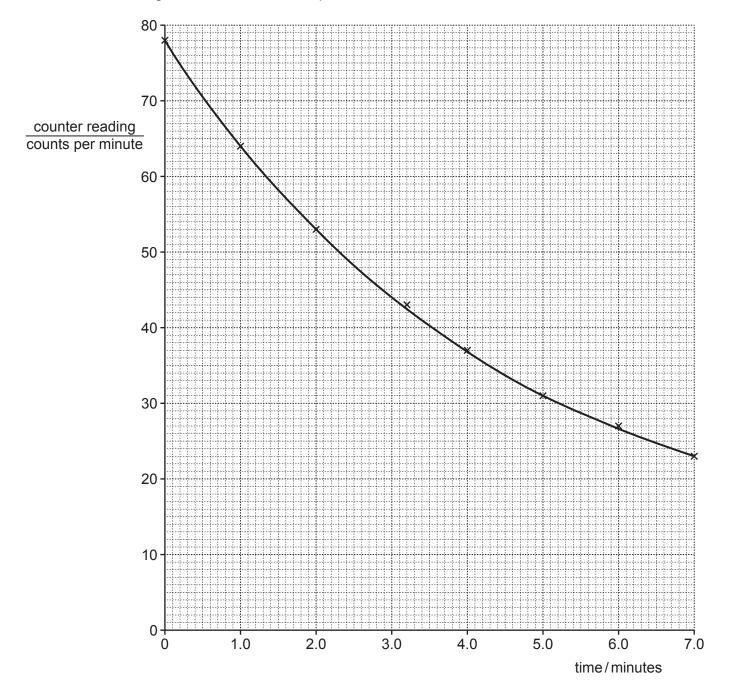


Fig. 11.1

Use the graph in Fig	. 11.1	to determine the	half-life o	of the isotope.	thallium-208.
----------------------	--------	------------------	-------------	-----------------	---------------

You must clearly show how you used the graph in Fig. 11.1.

half-life = minutes [3]

[Total: 5]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

		II	2 He	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	牊	radon -			
		II/			6	ш	fluorine 19	17	Cl	chlorine 35.5	32	Ŗ	bromine 80	53	Н	iodine 127	85	Αt	astatine -			
		>			8	0	oxygen 16	16	S	sulfur 32	34	Se	selenium 79	52	Б	tellurium 128	84	Ро	polonium –	116	^	livermorium -
		>			7	z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	Ξ	bismuth 209			
		≥			9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pp	lead 207	114	Εl	flerovium
		≡			2	Ф	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
											30	Zu	zinc 65	48	ပ္ပ	cadmium 112	80	Нg	mercury 201	112	ပ်	copernicium
cilicilis											29	Cn	copper 64	47	Ag	silver 108	6/	Αn	gold 197	111	Rg	roentgenium -
ellouic lable of Lielliells	Group										28	Z	nickel 59	46	Pq	palladium 106	78	귙	platinum 195	110	Ds	darmstadtium -
ווסמוכיום	Gre										27	ဝိ	cobalt 59	45	뫈	rhodium 103	77	'n	iridium 192	109	₹	meitnerium -
ווער			- エ	hydrogen 1							26	Ьe	iron 56	44	Ru	ruthenium 101	9/	Os	osmium 190	108	ΗS	hassium
											52	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium —
						pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≯	tungsten 184	106	Sg	seaborgium -
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	д	tantalum 181	105	Ср	dubnium –
						atc	ne le				22	i=	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	峜	rutherfordium -
											21	လွ	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
		=			4	Be	beryllium 9	12	Mg	magnesium 24	20		calcium 40		ഗ്	strontium 88	99	Ba	barium 137	88	Ra	radium
		_			က	:=	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	Ļ	francium -

r ₇₁	lutetium 175	103	۲	lawrencium	I
V _o					
mL	thulium 169	101	MQ	mendelevium	I
₈₈ <u>п</u>	erbium 167	100 100	FB	fermium	I
67 Ho	holmium 165	66 L	ЕS	einsteinium	ı
 Dy	dysprosium 163	86	ָל	californium	I
e5 Tb	terbium 159	26	Ř	berkelium	_
64 G d	gadolinium 157	96	ع د	curium	I
e3 Eu	europium 152	96	Am	americium	I
Sm	samarium 150	⁶ (J	plutonium	ı
Pm	promethium -	93	d N	neptunium	I
	neodymium 144	95)	uranium	238
59 P	praseodymium 141	91	J Ø	protactinium	231
Se Se	cerium 140	06 j	_	thorium	232
57 La	lanthanum 139	68	Ac	actinium	-

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).